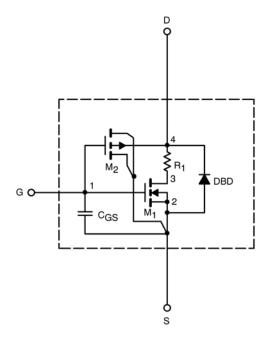


SPICE Device Model SUD35N05-26L Vishay Siliconix

N-Channel 55-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

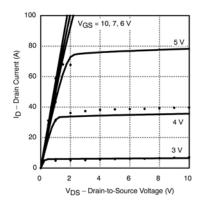
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

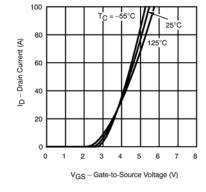
Document Number: 71659 www.vishay.com 05-Jun-04 **1**

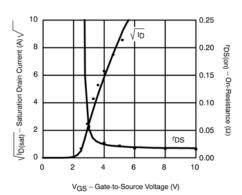
SPICE Device Model SUD35N05-026L

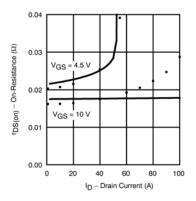
Vishay Siliconix

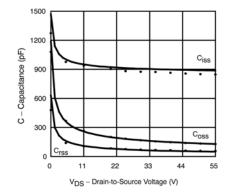
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.6		V
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 5 V	76		Α
Drain-Source On-State Resistance ^b	Γ _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	0.0176	0.0165	Ω
		V_{GS} = 10 V, I_{D} = 20 A, T_{J} = 125°C	0.0269		
		V _{GS} = 4.5 V, I _D = 15 A	0.0224	0.0215	
Forward Voltage ^b	V_{SD}	I _S = 80 A, V _{GS} = 0 V	0.92		V
Dynamic ^a			•		
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	915	885	pF
Output Capacitance	C _{oss}		183	185	
Reverse Transfer Capacitance	C_{rss}		74	80	
Total Gate Charge ^c	Q_g	V_{DS} = 25 V, V_{GS} = 5 V, I_{D} = 35 A	10	10.5	nC
Gate-Source Charge ^c	Q_{gs}		4	4	
Gate-Drain Charge ^c	Q_{gd}		4.8	4.8	
Turn-On Delay Time ^c	t _{d(on)}	V_{DD} = 25 V, R_L = 0.30 Ω 19 $I_D \cong 35 \text{ A}$, V_{GEN} = 10 V, R_G = 2.5 Ω 35 39 1	11	5	ns
Rise Time ^c	t _r		19	18	
Turn-Off Delay Time ^c	t _{d(off)}		35	20	
Fall Time ^c	t _f		39	100	
Source-Drain Reverse Recovery Time	t _{rr}		25	1	

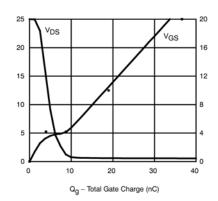

- a. Guaranteed by design, not subject to production testing.
- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Independent of operating temperature.


www.vishay.com Document Number: 71659




SPICE Device Model SUD35N05-26L Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71659 www.vishay.com 05-Jun-04